3.4.26 \(\int (a+a \cos (c+d x))^3 (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^6(c+d x) \, dx\) [326]

3.4.26.1 Optimal result
3.4.26.2 Mathematica [A] (verified)
3.4.26.3 Rubi [A] (verified)
3.4.26.4 Maple [A] (verified)
3.4.26.5 Fricas [A] (verification not implemented)
3.4.26.6 Sympy [F(-1)]
3.4.26.7 Maxima [B] (verification not implemented)
3.4.26.8 Giac [A] (verification not implemented)
3.4.26.9 Mupad [B] (verification not implemented)

3.4.26.1 Optimal result

Integrand size = 41, antiderivative size = 212 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {a^3 (13 A+15 B+20 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {a^3 (38 A+45 B+55 C) \tan (c+d x)}{15 d}+\frac {a^3 (109 A+135 B+140 C) \sec (c+d x) \tan (c+d x)}{120 d}+\frac {(11 A+15 B+10 C) \left (a^3+a^3 \cos (c+d x)\right ) \sec ^2(c+d x) \tan (c+d x)}{30 d}+\frac {(3 A+5 B) \left (a^2+a^2 \cos (c+d x)\right )^2 \sec ^3(c+d x) \tan (c+d x)}{20 a d}+\frac {A (a+a \cos (c+d x))^3 \sec ^4(c+d x) \tan (c+d x)}{5 d} \]

output
1/8*a^3*(13*A+15*B+20*C)*arctanh(sin(d*x+c))/d+1/15*a^3*(38*A+45*B+55*C)*t 
an(d*x+c)/d+1/120*a^3*(109*A+135*B+140*C)*sec(d*x+c)*tan(d*x+c)/d+1/30*(11 
*A+15*B+10*C)*(a^3+a^3*cos(d*x+c))*sec(d*x+c)^2*tan(d*x+c)/d+1/20*(3*A+5*B 
)*(a^2+a^2*cos(d*x+c))^2*sec(d*x+c)^3*tan(d*x+c)/a/d+1/5*A*(a+a*cos(d*x+c) 
)^3*sec(d*x+c)^4*tan(d*x+c)/d
 
3.4.26.2 Mathematica [A] (verified)

Time = 4.74 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.51 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {a^3 \left (15 (13 A+15 B+20 C) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (15 (13 A+15 B+12 C) \sec (c+d x)+30 (3 A+B) \sec ^3(c+d x)+8 \left (60 (A+B+C)+5 (5 A+3 B+C) \tan ^2(c+d x)+3 A \tan ^4(c+d x)\right )\right )\right )}{120 d} \]

input
Integrate[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*S 
ec[c + d*x]^6,x]
 
output
(a^3*(15*(13*A + 15*B + 20*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(15*(13 
*A + 15*B + 12*C)*Sec[c + d*x] + 30*(3*A + B)*Sec[c + d*x]^3 + 8*(60*(A + 
B + C) + 5*(5*A + 3*B + C)*Tan[c + d*x]^2 + 3*A*Tan[c + d*x]^4))))/(120*d)
 
3.4.26.3 Rubi [A] (verified)

Time = 1.64 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.08, number of steps used = 17, number of rules used = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.390, Rules used = {3042, 3522, 3042, 3454, 3042, 3454, 3042, 3447, 3042, 3500, 3042, 3227, 3042, 4254, 24, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^6(c+d x) (a \cos (c+d x)+a)^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^3 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^6}dx\)

\(\Big \downarrow \) 3522

\(\displaystyle \frac {\int (\cos (c+d x) a+a)^3 (a (3 A+5 B)+a (A+5 C) \cos (c+d x)) \sec ^5(c+d x)dx}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^3 \left (a (3 A+5 B)+a (A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{4} \int (\cos (c+d x) a+a)^2 \left (2 (11 A+15 B+10 C) a^2+(7 A+5 B+20 C) \cos (c+d x) a^2\right ) \sec ^4(c+d x)dx+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (2 (11 A+15 B+10 C) a^2+(7 A+5 B+20 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3454

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \int (\cos (c+d x) a+a) \left ((109 A+135 B+140 C) a^3+(43 A+45 B+80 C) \cos (c+d x) a^3\right ) \sec ^3(c+d x)dx+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((109 A+135 B+140 C) a^3+(43 A+45 B+80 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^3\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3447

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \int \left ((43 A+45 B+80 C) \cos ^2(c+d x) a^4+(109 A+135 B+140 C) a^4+\left ((43 A+45 B+80 C) a^4+(109 A+135 B+140 C) a^4\right ) \cos (c+d x)\right ) \sec ^3(c+d x)dx+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \int \frac {(43 A+45 B+80 C) \sin \left (c+d x+\frac {\pi }{2}\right )^2 a^4+(109 A+135 B+140 C) a^4+\left ((43 A+45 B+80 C) a^4+(109 A+135 B+140 C) a^4\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \int \left (8 (38 A+45 B+55 C) a^4+15 (13 A+15 B+20 C) \cos (c+d x) a^4\right ) \sec ^2(c+d x)dx+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \int \frac {8 (38 A+45 B+55 C) a^4+15 (13 A+15 B+20 C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^4}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \left (8 a^4 (38 A+45 B+55 C) \int \sec ^2(c+d x)dx+15 a^4 (13 A+15 B+20 C) \int \sec (c+d x)dx\right )+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \left (15 a^4 (13 A+15 B+20 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+8 a^4 (38 A+45 B+55 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx\right )+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \left (15 a^4 (13 A+15 B+20 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx-\frac {8 a^4 (38 A+45 B+55 C) \int 1d(-\tan (c+d x))}{d}\right )+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \left (15 a^4 (13 A+15 B+20 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {8 a^4 (38 A+45 B+55 C) \tan (c+d x)}{d}\right )+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{3} \left (\frac {1}{2} \left (\frac {15 a^4 (13 A+15 B+20 C) \text {arctanh}(\sin (c+d x))}{d}+\frac {8 a^4 (38 A+45 B+55 C) \tan (c+d x)}{d}\right )+\frac {a^4 (109 A+135 B+140 C) \tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {2 (11 A+15 B+10 C) \tan (c+d x) \sec ^2(c+d x) \left (a^4 \cos (c+d x)+a^4\right )}{3 d}\right )+\frac {(3 A+5 B) \tan (c+d x) \sec ^3(c+d x) \left (a^2 \cos (c+d x)+a^2\right )^2}{4 d}}{5 a}+\frac {A \tan (c+d x) \sec ^4(c+d x) (a \cos (c+d x)+a)^3}{5 d}\)

input
Int[(a + a*Cos[c + d*x])^3*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + 
 d*x]^6,x]
 
output
(A*(a + a*Cos[c + d*x])^3*Sec[c + d*x]^4*Tan[c + d*x])/(5*d) + (((3*A + 5* 
B)*(a^2 + a^2*Cos[c + d*x])^2*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((2*(11 
*A + 15*B + 10*C)*(a^4 + a^4*Cos[c + d*x])*Sec[c + d*x]^2*Tan[c + d*x])/(3 
*d) + ((a^4*(109*A + 135*B + 140*C)*Sec[c + d*x]*Tan[c + d*x])/(2*d) + ((1 
5*a^4*(13*A + 15*B + 20*C)*ArcTanh[Sin[c + d*x]])/d + (8*a^4*(38*A + 45*B 
+ 55*C)*Tan[c + d*x])/d)/2)/3)/4)/(5*a)
 

3.4.26.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3447
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a 
 + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x]^2), 
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 3522
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - 
d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2))   Int[(a + b*Sin[e + f*x])^m* 
(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C - B*d)*( 
a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2* 
(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, 
 x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ 
[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
3.4.26.4 Maple [A] (verified)

Time = 11.10 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.12

method result size
parts \(-\frac {A \,a^{3} \left (-\frac {8}{15}-\frac {\left (\sec ^{4}\left (d x +c \right )\right )}{5}-\frac {4 \left (\sec ^{2}\left (d x +c \right )\right )}{15}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (3 A \,a^{3}+B \,a^{3}\right ) \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}+\frac {\left (B \,a^{3}+3 C \,a^{3}\right ) \tan \left (d x +c \right )}{d}+\frac {\left (A \,a^{3}+3 B \,a^{3}+3 C \,a^{3}\right ) \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}-\frac {\left (3 A \,a^{3}+3 B \,a^{3}+C \,a^{3}\right ) \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {C \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right ) a^{3}}{d}\) \(237\)
parallelrisch \(-\frac {13 a^{3} \left (\left (A +\frac {15 B}{13}+\frac {20 C}{13}\right ) \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )-\left (A +\frac {15 B}{13}+\frac {20 C}{13}\right ) \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\frac {4 \left (-12 C -25 A -19 B \right ) \sin \left (2 d x +2 c \right )}{13}+8 \left (-B -\frac {38 A}{39}-\frac {37 C}{39}\right ) \sin \left (3 d x +3 c \right )+2 \left (-A -\frac {15 B}{13}-\frac {12 C}{13}\right ) \sin \left (4 d x +4 c \right )+\frac {8 \left (-\frac {38 A}{15}-\frac {11 C}{3}-3 B \right ) \sin \left (5 d x +5 c \right )}{13}-\frac {320 \left (A +\frac {3 B}{4}+\frac {13 C}{20}\right ) \sin \left (d x +c \right )}{39}\right )}{8 d \left (\cos \left (5 d x +5 c \right )+5 \cos \left (3 d x +3 c \right )+10 \cos \left (d x +c \right )\right )}\) \(242\)
derivativedivides \(\frac {A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{3} \tan \left (d x +c \right )+C \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-3 A \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 C \,a^{3} \tan \left (d x +c \right )+3 A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-3 B \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 C \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-A \,a^{3} \left (-\frac {8}{15}-\frac {\left (\sec ^{4}\left (d x +c \right )\right )}{5}-\frac {4 \left (\sec ^{2}\left (d x +c \right )\right )}{15}\right ) \tan \left (d x +c \right )+B \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-C \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(363\)
default \(\frac {A \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+B \,a^{3} \tan \left (d x +c \right )+C \,a^{3} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )-3 A \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 B \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+3 C \,a^{3} \tan \left (d x +c \right )+3 A \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-3 B \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )+3 C \,a^{3} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )-A \,a^{3} \left (-\frac {8}{15}-\frac {\left (\sec ^{4}\left (d x +c \right )\right )}{5}-\frac {4 \left (\sec ^{2}\left (d x +c \right )\right )}{15}\right ) \tan \left (d x +c \right )+B \,a^{3} \left (-\left (-\frac {\left (\sec ^{3}\left (d x +c \right )\right )}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-C \,a^{3} \left (-\frac {2}{3}-\frac {\left (\sec ^{2}\left (d x +c \right )\right )}{3}\right ) \tan \left (d x +c \right )}{d}\) \(363\)
risch \(-\frac {i a^{3} \left (-440 C -304 A -360 B -2320 A \,{\mathrm e}^{4 i \left (d x +c \right )}-2400 B \,{\mathrm e}^{4 i \left (d x +c \right )}-1680 B \,{\mathrm e}^{2 i \left (d x +c \right )}-2720 C \,{\mathrm e}^{4 i \left (d x +c \right )}-1840 C \,{\mathrm e}^{2 i \left (d x +c \right )}+570 B \,{\mathrm e}^{7 i \left (d x +c \right )}-750 A \,{\mathrm e}^{3 i \left (d x +c \right )}-1520 A \,{\mathrm e}^{2 i \left (d x +c \right )}-195 A \,{\mathrm e}^{i \left (d x +c \right )}-225 B \,{\mathrm e}^{i \left (d x +c \right )}-1200 B \,{\mathrm e}^{6 i \left (d x +c \right )}-570 B \,{\mathrm e}^{3 i \left (d x +c \right )}-720 A \,{\mathrm e}^{6 i \left (d x +c \right )}-1680 C \,{\mathrm e}^{6 i \left (d x +c \right )}+750 A \,{\mathrm e}^{7 i \left (d x +c \right )}-180 C \,{\mathrm e}^{i \left (d x +c \right )}-120 B \,{\mathrm e}^{8 i \left (d x +c \right )}+360 C \,{\mathrm e}^{7 i \left (d x +c \right )}-360 C \,{\mathrm e}^{3 i \left (d x +c \right )}-360 C \,{\mathrm e}^{8 i \left (d x +c \right )}+180 C \,{\mathrm e}^{9 i \left (d x +c \right )}+195 A \,{\mathrm e}^{9 i \left (d x +c \right )}+225 B \,{\mathrm e}^{9 i \left (d x +c \right )}\right )}{60 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{5}}+\frac {13 A \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {15 B \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) C}{2 d}-\frac {13 A \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {15 B \,a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {5 a^{3} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) C}{2 d}\) \(442\)

input
int((a+cos(d*x+c)*a)^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6,x,meth 
od=_RETURNVERBOSE)
 
output
-A*a^3/d*(-8/15-1/5*sec(d*x+c)^4-4/15*sec(d*x+c)^2)*tan(d*x+c)+(3*A*a^3+B* 
a^3)/d*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+t 
an(d*x+c)))+(B*a^3+3*C*a^3)/d*tan(d*x+c)+(A*a^3+3*B*a^3+3*C*a^3)/d*(1/2*se 
c(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))-(3*A*a^3+3*B*a^3+C*a^3) 
/d*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+1/d*C*ln(sec(d*x+c)+tan(d*x+c))*a^3
 
3.4.26.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.85 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {15 \, {\left (13 \, A + 15 \, B + 20 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, {\left (13 \, A + 15 \, B + 20 \, C\right )} a^{3} \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (8 \, {\left (38 \, A + 45 \, B + 55 \, C\right )} a^{3} \cos \left (d x + c\right )^{4} + 15 \, {\left (13 \, A + 15 \, B + 12 \, C\right )} a^{3} \cos \left (d x + c\right )^{3} + 8 \, {\left (19 \, A + 15 \, B + 5 \, C\right )} a^{3} \cos \left (d x + c\right )^{2} + 30 \, {\left (3 \, A + B\right )} a^{3} \cos \left (d x + c\right ) + 24 \, A a^{3}\right )} \sin \left (d x + c\right )}{240 \, d \cos \left (d x + c\right )^{5}} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6, 
x, algorithm="fricas")
 
output
1/240*(15*(13*A + 15*B + 20*C)*a^3*cos(d*x + c)^5*log(sin(d*x + c) + 1) - 
15*(13*A + 15*B + 20*C)*a^3*cos(d*x + c)^5*log(-sin(d*x + c) + 1) + 2*(8*( 
38*A + 45*B + 55*C)*a^3*cos(d*x + c)^4 + 15*(13*A + 15*B + 12*C)*a^3*cos(d 
*x + c)^3 + 8*(19*A + 15*B + 5*C)*a^3*cos(d*x + c)^2 + 30*(3*A + B)*a^3*co 
s(d*x + c) + 24*A*a^3)*sin(d*x + c))/(d*cos(d*x + c)^5)
 
3.4.26.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**3*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)* 
*6,x)
 
output
Timed out
 
3.4.26.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 446 vs. \(2 (200) = 400\).

Time = 0.21 (sec) , antiderivative size = 446, normalized size of antiderivative = 2.10 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {16 \, {\left (3 \, \tan \left (d x + c\right )^{5} + 10 \, \tan \left (d x + c\right )^{3} + 15 \, \tan \left (d x + c\right )\right )} A a^{3} + 240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A a^{3} + 240 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B a^{3} + 80 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{3} - 45 \, A a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 15 \, B a^{3} {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 60 \, A a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 180 \, B a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 180 \, C a^{3} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 120 \, C a^{3} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 240 \, B a^{3} \tan \left (d x + c\right ) + 720 \, C a^{3} \tan \left (d x + c\right )}{240 \, d} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6, 
x, algorithm="maxima")
 
output
1/240*(16*(3*tan(d*x + c)^5 + 10*tan(d*x + c)^3 + 15*tan(d*x + c))*A*a^3 + 
 240*(tan(d*x + c)^3 + 3*tan(d*x + c))*A*a^3 + 240*(tan(d*x + c)^3 + 3*tan 
(d*x + c))*B*a^3 + 80*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a^3 - 45*A*a^3*( 
2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 
 1) - 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 15*B*a^3*(2*(3* 
sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 
 3*log(sin(d*x + c) + 1) + 3*log(sin(d*x + c) - 1)) - 60*A*a^3*(2*sin(d*x 
+ c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) 
 - 180*B*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) 
+ log(sin(d*x + c) - 1)) - 180*C*a^3*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) 
- log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 120*C*a^3*(log(sin(d*x 
+ c) + 1) - log(sin(d*x + c) - 1)) + 240*B*a^3*tan(d*x + c) + 720*C*a^3*ta 
n(d*x + c))/d
 
3.4.26.8 Giac [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 341, normalized size of antiderivative = 1.61 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {15 \, {\left (13 \, A a^{3} + 15 \, B a^{3} + 20 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, {\left (13 \, A a^{3} + 15 \, B a^{3} + 20 \, C a^{3}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (195 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 225 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} + 300 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{9} - 910 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 1050 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 1400 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 1664 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 1920 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 2560 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 1330 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 1830 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2120 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 765 \, A a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 735 \, B a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 660 \, C a^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{5}}}{120 \, d} \]

input
integrate((a+a*cos(d*x+c))^3*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^6, 
x, algorithm="giac")
 
output
1/120*(15*(13*A*a^3 + 15*B*a^3 + 20*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) + 
1)) - 15*(13*A*a^3 + 15*B*a^3 + 20*C*a^3)*log(abs(tan(1/2*d*x + 1/2*c) - 1 
)) - 2*(195*A*a^3*tan(1/2*d*x + 1/2*c)^9 + 225*B*a^3*tan(1/2*d*x + 1/2*c)^ 
9 + 300*C*a^3*tan(1/2*d*x + 1/2*c)^9 - 910*A*a^3*tan(1/2*d*x + 1/2*c)^7 - 
1050*B*a^3*tan(1/2*d*x + 1/2*c)^7 - 1400*C*a^3*tan(1/2*d*x + 1/2*c)^7 + 16 
64*A*a^3*tan(1/2*d*x + 1/2*c)^5 + 1920*B*a^3*tan(1/2*d*x + 1/2*c)^5 + 2560 
*C*a^3*tan(1/2*d*x + 1/2*c)^5 - 1330*A*a^3*tan(1/2*d*x + 1/2*c)^3 - 1830*B 
*a^3*tan(1/2*d*x + 1/2*c)^3 - 2120*C*a^3*tan(1/2*d*x + 1/2*c)^3 + 765*A*a^ 
3*tan(1/2*d*x + 1/2*c) + 735*B*a^3*tan(1/2*d*x + 1/2*c) + 660*C*a^3*tan(1/ 
2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^5)/d
 
3.4.26.9 Mupad [B] (verification not implemented)

Time = 5.09 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.38 \[ \int (a+a \cos (c+d x))^3 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^6(c+d x) \, dx=\frac {a^3\,\mathrm {atanh}\left (\frac {a^3\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (13\,A+15\,B+20\,C\right )}{2\,\left (\frac {13\,A\,a^3}{2}+\frac {15\,B\,a^3}{2}+10\,C\,a^3\right )}\right )\,\left (13\,A+15\,B+20\,C\right )}{4\,d}-\frac {\left (\frac {13\,A\,a^3}{4}+\frac {15\,B\,a^3}{4}+5\,C\,a^3\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (-\frac {91\,A\,a^3}{6}-\frac {35\,B\,a^3}{2}-\frac {70\,C\,a^3}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {416\,A\,a^3}{15}+32\,B\,a^3+\frac {128\,C\,a^3}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {133\,A\,a^3}{6}-\frac {61\,B\,a^3}{2}-\frac {106\,C\,a^3}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {51\,A\,a^3}{4}+\frac {49\,B\,a^3}{4}+11\,C\,a^3\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}-5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \]

input
int(((a + a*cos(c + d*x))^3*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c 
 + d*x)^6,x)
 
output
(a^3*atanh((a^3*tan(c/2 + (d*x)/2)*(13*A + 15*B + 20*C))/(2*((13*A*a^3)/2 
+ (15*B*a^3)/2 + 10*C*a^3)))*(13*A + 15*B + 20*C))/(4*d) - (tan(c/2 + (d*x 
)/2)^9*((13*A*a^3)/4 + (15*B*a^3)/4 + 5*C*a^3) - tan(c/2 + (d*x)/2)^7*((91 
*A*a^3)/6 + (35*B*a^3)/2 + (70*C*a^3)/3) - tan(c/2 + (d*x)/2)^3*((133*A*a^ 
3)/6 + (61*B*a^3)/2 + (106*C*a^3)/3) + tan(c/2 + (d*x)/2)^5*((416*A*a^3)/1 
5 + 32*B*a^3 + (128*C*a^3)/3) + tan(c/2 + (d*x)/2)*((51*A*a^3)/4 + (49*B*a 
^3)/4 + 11*C*a^3))/(d*(5*tan(c/2 + (d*x)/2)^2 - 10*tan(c/2 + (d*x)/2)^4 + 
10*tan(c/2 + (d*x)/2)^6 - 5*tan(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 - 
 1))